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ABSTRACT
This paper is concerned with Lax-Wendroff methods for a class of
hyperbolic history value problems. These problems have the feature that
glohally (in time) smooth solutions exist if the data/;re sufficiently small
he aothoe
and that solutions develop aingularities for large data. W€ prove (second
order) convergence of the Lax-Wendroff method for smooth solutions and
inve;tigate numerically the dependence on the initial data. ‘We demonstrate

the occurrence of shock type singularities and compare the results to the

quasilinear wave equation (without Volterra term).
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SIGNIFICANCE AND EXPLANATION

The motion of viscoelastic materials can be modelled by partial
integrodifferential equations. For several model problems, recent

investigations have been concerned with the question whether or not these
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equations allow the development of shocks.., In this paper, we investigate this

guestion numerically. Convergence proofs for a Lax-Wendroff type method are

given. Our computed solutions confirm the predictions of previous papers.

For small data, the solutions remain smooth, but for large data

discontinuities develop.
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LAX-WENDROFY METHODS FOR HYPERBOLIC HISTORY VALUE PROBLEMS

- Peter Markowich* and Michael Renardy**

1. INTRODUCTION

Viscoelastic materials are modelled by congtitutive laws relating the stress to the

s e 2Bt A

H history of the strain (6], [14], (15). For most of the constitutive laws suggested by

rheologists (for reviews see e.g. (1], {2), [16], [20])), the functional relationship has

the form of a convolution integral. In many cages, the resulting integrodifferential
equation of motion can be regarded as a perturbation of a hyperbolic equation [17].
This paper deals with the numerical analysis of a model equation of this form for one-

dimensional viscoelastic solids, introduced by Dafermos and Nohel [3], [4]. The equation

has the form

t

o = $u ) - .{ b(t = s)¥lu, (x,8)) ds + £(x,t) ,

(1.1) u,

where b is a positive, bounded, smooth, integrable kernel and ¢,y are smooth functions

satisfying

#(0) = $(0) = 0, ¢'(0) > 0, $'(0) > 0, ¢'(0) - ¥'(0) [ b(vIdr> 0 .
0

1 Particular interest in this problem arises for the following reason: It is well known that )

the quasilinear wave equation 1

(1.2) L .(“x)x
need not have globally smooth solutions even if the initial data u(t = 0), ut(t = 0) are
smooth. Also, no damping occurs since the energy

(1.3) Blul = [ ultx,tdax+ [ 8w (x,))ax

*Inst. £. Angew. und Num. Math., Technische Univ. Wien, A~1040 Wien, Austria.
#%The work of this author was supported by Deutsche Forschungsgemeinschaft.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,
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is a constant of the motion. Here #&(u) = [“ (14 0)do. On the other hand, Dafermos and
Nohel [3], (4] have shown that solutions too(l.‘l) on a finite interval (with Dirichlet or
Neumann conditions on the boundary) remain smooth and decay to zero if the initial data and
the forcing term are smooth and small in appropriate Sobolev norms.

The dissipative influence of the integral term thus acts against the formation of
singularities. However, this effect is only strong enough for small initial data. The
analysis of similar equations (8], {13], [24) has shown that, for bounded integral kernels
(this is essential, cf. [18)) and large data, smoothness can be lost in finite time and
and u

shocks (i.e. discontinuities in u can develop.

x t)

In this paper we discuss Lax-Wendroff type schemes for the numerical solution of
(1.1). The equation is, for this purpose, transformed to a system by setting u, =v,
u, = w.

In section 3 we show that - for appropriate integration methods approximating the

Volterra term - these schemes converges of second order on any finite time interval on which

a smooth solution exists. PFor the stability of this method, the nondegeneracy condition
¢' # 0 is essential, as is evident from recent work of Friedel and Osher [S].
In section 4 we show convergence uniformly wp to t = = for the case of spatially |

periodic small data and the special class of kernels

] -xzc
(1.4) blo) » §

1T X A, >0,
t=1 | M

Such kernels are commonly used in rheology. The proof is patterned after a new proof for
the existence of globally smooth solutions, which we present in section 2. The essential
ingredients for this proof are the stability of the trivial solution u = 0 and the
quasilinear hyperbolic nature of the equations. If the l‘ are very big, a stiffness
problem arises in the numerical analysis, and we point out a simple wmodification of our

scheme which avoids this.

-2e
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Section 5 is concerned with numerical experiments. Computations demonstrate that
singularities occurring for large data are indeed of shock-type (v and w have jumps).
Since the Lax~Wendroff method is an artificial viscosity method the shocks are not sharp.

A "shock layer®™ occurs whose width is proportional to the mesh size (see also Kreiss [12]).

Our computed solutions to (1.1) are compared to those for the corresponding
quasilinear wave equation (1.2). This comparison shows that the dissipative mechanisa of
the Volterra term delays the time of the blow~up even if it is not strong enough to avoid
the development of singularities.

It is well known that ~ for a scalar conservation law = the Lax-Wendroff wmethod may
converge to a nonphysical weak solution (which does not fulfill the entropy condition), see
[5], {7]. Por the problem (1.1), no theory of weak solutions and entropy conditions has
been developed yet, and the main interest here is in computing globally smooth solutions or
smooth solutions up to the blow-up time. For this purpose the second order Lax-Wendroff
scheme is superior to first order methods, which do converge to the "right” solution for
hyperbolic congervation laws.

However, our numerical results indicate that (1.1) has wesk solutions with shock-type

singularities.

Acknowledgement: This research was motivated by a suggestion of Professor John A. Nohel.
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2. ANALYTI THEORY .

I~ this section, we give a new proof for the global existence of smooth solutions in
the case of small data. (The local existence can be shown using the ideas of Kato (9],
{10), cf. [17)). The ideas used in this proof will serve as a guideline in our analysis of
the numerical scheme in section 4. We assume that the kernel b has the form (1.4) and
that we are dealing with spatially periodic solutions of (1.1): u(x + 2¥,t) = u(x,t). For
simplicity, we also assume ¢ = §. (For ¢ # ¥, a similar, but more technical analysis is

possible, see the remarks belov). Under these conditions, the substitution v = u,,

t -X’.(t - 8)

we=u, g =-u ¢+ g . #lu_(x,8)) ds ylelds the system
Vv
M M
(2.1) =) - 121 X9, - (1_21 R vet

M
63 - -quj - Ajw + 1-21 ‘1(91 +w - f

This is a perturbation of a hyperbolic system. In order to make it symmetric hyperbolic,
y - ~

we define: ®ly) = | /47(y) dy, Bly) = @' («w '(y)) and set v = w(v). Then (2.1)
0

agsunes the form

V-s(,
Viw
x

~ H
(2.2) Vo= Blviv, - 121 K(g +w) + £

M
gj - -Aj(qj + w) + 121 Ki(qi +w - f

Clearly, B8 is positive in a neighborhood of 0. If ¢ # ¥, (1.1) can still be
transformed to a symmetric hyperbolic system after differentiating the equation [17)}. An

analysis similar to the following can then be applied.

-4~
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The analysis will consist of three steps:
(i) Show that the linearization of (2.2) at V= 0, w=0, g; = 0 generates a
semigroup of negative type. As a consequence, the inhomogeneous initial value problem has

a unique bounded solution for t € [0,%), if the inhomogeneous term is bounded.

(1) Show that the same property holds for the linearization of (2.2) at

vy (x,£), w= vo(x,f.), where ;o, are snall in an appropriate norm.

° Yo
(1i1) Use a contraction argument for the nonlinear problem.
Por brevity, let us write =z = (;,v,g‘,...gn). The operator setting up the linearization

of the right hand side of (2.2) at 'z = 0 is denoted by A. This operator acts Pourier—

componentwise, i.e. with g = E .k‘l.kx we have Az = 2 Akzkc“‘x, where the matrix
kes kes _
Ay is given by .
3
i
o 1*‘(0) o L] . L L L L4 . L] . o §
1*‘(0) -mx -“ ¢ o 2 o o ¢ o o o "K"
Ak- 0 tli-l' !1-X1 xz.....x"
0 t‘i-xﬂ K1 Kz....xn-lu
ﬂ
. The characteristic equation of A, 1is

M K
(2.3) 22+ 280 - w2 I -0
=M

Lesma 2.1,

All eigenvalues of A, have negative real parts, except a double zero eigenvalue for !

k = 0,
Proof.

The function defined by the left hand side of (2.3) has simple polea at A = -Ai, and

therefore has zeros between these poles. This accounts for M - 1 eigenvalues of Age A

further eigenvalue lies between zero and - ain Xl. For A > 0, the left hand side of t
=1 ()M !

(2.3) is always positiva. If A is complex, the imaginary part of (2.3) yields

“§a
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2,2 " i
(2.4) 2Re AImA-Kk8(0) | my—Sx=0
1=1 1

) 4
Since the sign of 1Im x—% is opposite to that of 1Im A, this is only possible if
i

Re A < 0. Por k = 0, it is easy to see that the eigenvalues of A, are zero (two-fold)

and -Xi.

The presence of zero eigenvalues is inconvenient, but we can use a simple trick to get

2%
rid of them. It can be seen that the integrals I = [ o "($1ax ana
. | 0

2%
T2 " c{ (12

) 3
x—i (gi + w) - w)dx are invariants of the motion described by (2.2),
11

2%
provided that f fdx is zero. We limit our attention to forces f satisfying this
0

condition and to solutions for which the two integrals vanish initially. (Physically this
means that the total force and the total momentum are zero). Such solutions also solve any
modified equation, in which certain multiples of the two integrals are added to the right
hand side of (2.2). Such a modification replacing the double zero eigenvalue by negative
eigenvalues can be found. We shall refer to the so modified equation as (2.2') and to the
modified linearized operator as A°.

As k + », two eigenvalues of Ak have the form $ik8(0) + 0(1), the others
converge to distinct finite limits. Hence Ay is diagonalizable for large k. Let Ty
be a transformation matrix such that 'r;'Ak'rk is diagonal. The eigenvectors of Ay
setting up the columns of Tx also have limits as k + =, and thus Ty can be normalized

such that, as k + ®, it converges to a limit T, T, has the form

- 0....0
0....0

(2.5) T =

T
-«

O sts O b
D ets © b =

As a consequence, both Ty and 'r;' stay bounded as k + =, Therefore, by applying the

transformation

Y

z = I 'k°““ -y = Z Tkykelkx s
kex kes

-




the linearized operator in (2.2') assumes diagonal form (up to, maybe, a finite dimensional
perturbation), and it is clear that the type of the semigroup generated by such an operator
is determined by its eigenvalues. As an easy congsequence, we obtain
Corollary 2.2.
Por each ; e u"((0,e) x wzuul"") and each ;o e Bn(llzuzl’"z), there exists a unique
solution ; of the equation ; = A'; + E. which satisfies the initial condition
2(x,0) = £ (x).

Here H"™ denotes the usual Sobolev space, and n is arbitrary. This concludes step

(1) of our analysis.

For abbreviation, let us now put

FIVow g eeesgy) = (V= BIVIW + T4 = BV, + [K (g, +w) -1,

(5 + Mgy + Aw - I X g, + w0 + )] ,Ste = o)t = 0), fg (e = 01N )
For n > 2, P is a smooth mapping from " ([0,®) x I/ZIltl.“z) into

1 (0, %) x w2vzid**?) x WV (m/2vmi ™t 2).  corollary 2.2 implies that the linearized
mapping DF(0) has an inverse. As a next step, we show that DF is invertible not only
at 0, but in a neighborhood of 0 (step (ii)).

Lemma 2.3, ’
¢4 2? e 6 ([0,®) x l/zﬂlllhz) (n > 2) has sufficiently small norm, then D!'(;o) has an
inverse which is bounded as a mapping from H"([0,®) x llzllsll" 2) x a"(m/2 =) ineo
B ((0,=) x w2rm™?),

Sketch of the Proof:

We show Lz-:l.nvorubnity. EBstimates for the derivatives are then easily obtained by
successively differentiating the equation. The probles lies in the fact that the
perturbations resulting from the terms -3(;)w » and -B(w’?)’v.x are not bounded relative
to A', a1d hence we need a more refined argument than standard perturbation theory.

It is well known [10] that, for B(;o) e u’(wzum). the operator
B (V0 o (B(;o) - B(O))(w*,;x) is a bounded perturbation of a skew-adjoint operator

B. Therefore, the linearization of (2.2') has the following structure

7=
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A -~ -~
(2.6) Ea A’z +B2+Cz+f

2 2

where A' is as above, B is skew-adjoint and C : L° + L° has small norm. Above, we

indicated how to construct a transformation T = (Tk)kﬂ such that A." is diagonalized,

or, if it has a degenerate eigenvalue for finite k, transformed to Jordan form. Since

all eigenvalues are negative, we can choose T such that 'r"x"r is dissipative:

(2,7 'A'T5) < -0(z,2) for some G > 0. Moreover, as k + ®, we have T, =Tt o(i-)

with T_ of the form (2.5). As a consequence 'r"n'r - 'r:‘

BT, 1is bounded (B is a first
order differential operator, but T, = T 1is of order minus one). Moreover, it is easy to

'BT, is still skew-adjoint. It follows that T '(A' + B + C)T is

see that T_
dissipative. This implies the lemma.

We have thus shown the invertibility of the linearization in a neighborhood of 0.
At this point, generalized implicit function theorems (see e.g. (21)) would be appli-
cable, however, the quasilinear nature of (2.2') admits a simpler argument. Namely,
we can write r(;) in the quasilinear t'orl P(;) = L(;);, where
L(;);' - DP(O);' + (8(0) - 3(;))(\1;‘.;;.0,...,0). We wish to solve the inhomogeneous
problem r(;) - ;. Since we have just shown that L(;) is invertible for small enough
;, we try the iteration ;. - L-1(;-.1 );. If the Hnorms of f and the starting
value ;1 are small, the ;n stay in a small neighborhood of zero in H". Moreover,

we have

a

L(:._,)zn = L(l.)l." =3 I‘"-”'.ﬂ - z_) = (x.(:__1) - L(z_))z_

whence we find the estimates

a -

hwﬂ - zl'n—i < clzn—

- -

1° zl\ln-'l .zn.n

If the l;-l'I are small enough, then the sequence ;- converges in Hn'1, and it is
immediate that the limit must be a solution. We thus find
Theorem 2.4.
It £ e((0,®) X W2WTB) and (0),w(0),g,(0),000,q,(0) € H (R/27EiR)
{n » 2) have sufficiently small norms, then (2.2') has a solution

‘;1'091100009") e Hn(IO.-) x wzmn'" which assumes the prescribed

initial values.




3. LAX-WENDROFF TYPE SCHEMES = LOCAL ANALYSIS

In this section we do not require the kernel b to have the special form (1.4). It
+
is only assumed that b is sufficiently smooth and that b,b' are in L‘(l )e
Bquation (1.1) is transformed to a system by setting
(3.1) vesu , w= ut .
This yields

(a) v = w

(3.2)
(b) v, - O(V)x - b"’(v)x + fix,t)

with the initial data

(a) v(x,0) = “6(*)' x€eR

(3.3)
(b) w(x,0) = u1(x), x€R .,

The star denotes the convolution
t

(3.4) b*p(t) = [ b(t - s)p(s)ds . .
0

We discretize (3.2), (3.3) using a rectangular mesh. The values of the approximations to

v,w at the grid points are denoted by a lower spatial and an upper temporal index
ol
1M
Definition 3.1.

The following definition explains the details of the notation.

et h>0, kXk>0. FPor n€M and 1L €ZT we set L, = nk, x4 = ih. For

u =

L]
1) 1ex,nem we define the "spatial™ difference quotients b




and the “"temporal®™ difference quotient

unﬂ -
Yy

k

+ n
6u1

The idea of the Lax-Wendroff method is to approximate V(xi't ) by the

n+

)' w(xlptn'”

truncated Taylor series

2
k
(a) v(xi'tn'b‘l) - v(xi,tn) + k"t("i"n) + 3 vtc(xi'tn)
(3.5)
kz
(b) '(xi'tnﬂ) L] '(xl'tn) + kwt(xl.tn) + > 'tt(xi'tn)

and to substitute for the t-derivatives the corresponding expressions obtained from
(3.2). The x-derivatives in these expressions are approximated by gpatial difference
quotients in a symmetric way. This yields

2 k

n+1 n n_ k + - n + - n n
v = v +kAw1+2[AAO(vi)-AA(b'W(vi))i-Afi]

(a) i i

(3.6)

nt1 n n k n n
(b) w<£o o= + k[AO(vi) - A(b * 0(v1)) + fil

2 k
k + 1 n n -n n n n
+3- 18 w(; (vi+ v 08 wi) - blO)AW(v,) = A(B* * Wv D)) + (£.),]

for n>» 0, i e 2, where we denoted
(3.7) £ = f(x ,t ), (£)7 = £ (x ,t)
i i a7 el t i’ n

k
and * is the discrete convolution operator

k n n j
3.8) b * =k
( P 1-20 able _)p
We require that the weights ajn fulfill
m
(3.9) 0ca <a jzo '“j,nﬂ - “j-' <c,

where C is independent of m. For example, for the trapezoidal rule %n - a --,:;




Ry

a, =1 for 3 =1 (1) n- 1 holds. The initlal data are

Iin
a v = ulix,) i1ex
i [ R
(3.10)
0
(b) 'i - “‘(xi) v iex.
k
If * is at least second order accurate for sufficiently smooth p and b, i.e. if
k n tn 2
(3.11) Ibept-]f b(t_ - s)p(s)as| = o(x")
0

holds, then the Lax-wWendroff method (3.6), (3.10) is second order accurate (as far as the
local discretization error is cuncerned), provided that the data and solution aré smooth
enough.

Thus our scheme is second-order consistent. In order to show convergence, we have to
prove stability [11]. Since the linearization is Lipschitz continuous with a Lipschitz
constant of order o(%), it is sufficient to show stability for the linearization at the
exact solution, it is, however, not enough to show stability for the linearization at zero,
even if we are dealing with small solutions. Nevertheless, we analyze the stability at the
trivial solution first, since this will also give us a guideline for dealing with the
n_.n

variable coefficient problem. We thus linearize (3.6) at v, Fw,

solution obtained for f'; 0, uo(x) 2 u1(x) 2 0, This yields the constant coefficient

0, which is the

scheme

(a)  &'y" = ay®, + X (ermatay®, - 0'(0)A+A-(b‘: ") oe gt
Yoy = 0y v 3 Yo ¥4 94

{3.12)
(b)y  &'y" = v (0)ay", - V'(O)A(bf )
Yai Y11 LAY

k
k +.-.n n n n :
+ 2 [¢°(0)A A You ~ b(O)v'(O)Ayu - 9 (0)A(D* * yu)l + 994 : !
for n>0, i €38, with the initial data

(a) iesxs

0
Yo4 = Y904 ¢
(3.13)

(b) iez.

0
Y21 = Y301 *

-11-
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The stability analysis will proceed in the discrete L2-space

(3.14) L, = {f (:j)j“uje:,mh (h jZ's Ifjl )‘ < =}

(Once stabhility in z.z is known, it is easy to deduce stability is higher order digcrete
Sobolev spaces).

We assume that the initial data in (3.13) and the inhomogeneous terms in (3.12) take

values in 1.:.

Since we wish to apply Fourier analysis, we extend (3.12) to the whole real line by
defining l’.z(R)-functionn g': P g: ¢ Y90 ¢ Y30 such that they take the prescribed values
at the grid points. We then regard (3.12), (3.13) as equations on all of R. The spatial

difference operators are defined for t.z(l)-funcuoms in the obvious way
(A’y)(x) - ﬂ!..’.!%.:.’.‘.’_‘l etc,

For y e Lz(l) we denote the Fourier transform by y:

|-

-
| *%(s)as
2% -

(3.15) yi(x) =

2

Now we prove

Lemma 3.1.

—

Let 0 < -ﬁl.'(O) < 1 and assume that ¢'(0) > 0, b,b' € L‘(I+). and (3.9) holds.

Then the stability estimate

max (1731 _ + l;;l ) <

j=0(1)n ! x.: 12
(3.16)

< C(tn)(ly")l 2t 'Y20| 2t max (Mgyd , + qul ))

N Ly 3=0(1)n=1 ‘z.: r.:

holds for h sufficiently small. MNere ;j 9 denotes the solution of (3.12), (3.13).

1'¥2
‘n “n
*n Y “n 9
Proof. We apply Pourier transform and set Y = “n , G = “n s+ W= gh, This

ylields the equation

-12-
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2
. . Fioy (os @- D\
(3.17) Y e) = Blw)Y (s) - ¥'(0) (b * yls))
Y
i o sin @

X . . .
-ax L0, sie GJIB* * ya) + BlONyT(s)) + KG™(s)
R

vhere
y w2
(3.18) B(w) = 1 + 4 0'(OTA sin 0+m-)-a(co. w- 1),
0 1
A= .
$'(0) 0
We transform A to its diagonal form
—_— —— 1 1
(3.19) A= alag(V$7(0),~/¢°(0))x" ', £ = e e
o -/
and set
(3.20) V(o) = £ ¥%e)

We thus obtain the new difference scheame

“nt1 - $00) (z(@ - 147, % Vi) + vhm)
(3.21) vV '(e) = atagix(w),z(w)) - - (2 )b * ( =)

¢ (0) \F(w) - 1
x v(s)eviis) v(s)+v"(s)
- $40) ( sinw A 2 o2 -
1 516y (cgin o(®' * ( ) ) + bto) ) )+ xe
where
(3.22) Z(w) = 1 + 1y sin w + p2(cos & = 1)

An easy calculation shows that |z(w)| <1, w # 2ev, L €%, and z(28W) = ¢,

that 0 < 4 < 1. In the following, we only use that |z(w)| < ¥ ¢+ O(k). Hence,

'c‘“m

provided

et

is uniformly bounded for n < £, vor stability on bhounded intervals, we need not be

k

concerned with O(k)-perturbations on the right side of (3.21) (see {19], section 3.9).

is thus sufficient to study the perturbed problem

- a

- - - N - x w'ew) -
(3.21) W - dtaglatu), Btenw® - L8 (29 2 1y 0 (22)) 4
13-

It




which we rewrite as
‘|, ‘m
- - - - k w +w, o9 ay D=1
(3.20) W = diag(z(w), 2 ww’ - -z-:i(lo’-} H((f::: e B52) exwh
-0 =0
where the operator H 4is defined as
b IO L PO PR
(3.25) H(e?) = ] atagtz"(w),z2" (@)G
1 j=0 3=0
o It
~4 17 Y2
Summation by parts yields (with u’ = (——z——))
n=1 k k .
(3.26) I ™" 0 -amsd) =@ -Dmea™h)
=0
n=2 k
+ 1 (zn.-P1 - 2" e u"‘ -b* ;-)
=0
k “n=1 n-1 nt2 -, “m+1 -}
- * -
b*u z -zo z [ka-‘_h."bou
n “y n -
+k jzo (m:"-_',‘lbmﬂ_j - cj-b._j)u 1 - kz @, byu,
Morecover, note that cj'-ﬂb-”_j - uj-b__j - (u:".‘+1 - cj_) b.ﬂ-j + °jn(b-+1-j - b-_j)

and that b-_”_j - h._j = O(k). Using (3.9), one easily obtains from (3.26)

‘n *a
w,£ +w =1 -

(3.27) W(E 2B e ((253) rcce,  max Wi
=0 3=0(1)n=1

with some constant C. If we choose T such that Y = CT < 1, we get from (3.23) that

» (3.28) max W<y max  wdie c1|;°| ecr  max ml

$=0(1)n 4=0(1)n=1 §=0(1)n=1

and hence
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1 (c1lw°| + T max wi
M 320 (1)n-1

(3.29) max  Iwld < ;
3=0(1)n

holds for tn <T.

This argument can be iterated. We may pose a new initial value problem at the grid
point nearest to t = T and continue the solution into the interval [T,2T] etc. This

yields an estimate of the form

(c

~ Qj
" 1lw‘,l + ¢, T max [): 3 )

(3.30) max P PP 1 .
3=0(1)n

kl“tj‘(k*‘l )r (1 -v)

for x€N. (3.16) immediately follows.

We see from this proof that solutions of the linearized problem can grow at most
exponentially. The integral has been treated as a "lower order" perturbation and we made
no use of the fact that it has a damping influence, in fact, no conditions on the sign of
the kernel were needed here. A convergence statement reflecting the damping requires a
more sophisticated analysis. Por a special case this is dealt with in section 4.

As mentioned above, we have to study the linearization at the exact solution

vix,t),w(x,t) of (3.2), (3.3) rather than the linearization at the trivial solution. This

yields the scheme

2 k
n+? n n k + .- n + - n n
(a) Yoy " Yy4 + kAyu + 2 (A A (0'(v(x£,tn)yu) -48A(*"* t'(v)yun + kgu

(3.31)
Kk

nt + kIB(O' (vIy}) = BB ¢ (¥ (wiy} D)

(b) Yo

n
Ya

+"-2(A" v (v ) + Mmay"
2 (0705 (vlxg ) + vix, (ot )8 vy

1 1 n n -
+ 30N vk ) ¢ vk ot DDy, vy g (J8 wixg e )

k
= BIO)ALK' tv)y],) = D' * (¥ (WIY( )]} + kg

(a) ¥4 = Yi04
(3.32)

() Y204

Y21

T T i 3P Wk 7 e L 7+




Lemma 3.2.

Assume 0 < C <%:- max /¢'(vix,t)) < 1 holds and assume that b,$. ¥ are

1.+ x€R, te(0, 1)
smooth, b,b* €L (R'), ¢' > 0. If the exact solution v,w is smooth on R x [0,7], then

an estimate of the form (3.16) holds for the solution of (3.32), (3.32) on ({0, 1).
Proof.
Again we may neglect terms of order k on the right hand side of (3.31), which leaves

us with the perturbed problem

2 2 x
att _ on n k_ n+-n _ k= 4= n_n n
(8} vy = vy Y Rbv, F - 4A A, -3 A 4D * (Y ) + khy
(3.33)
{v) Mo Pk, e £ ot v, - kAbl: (Vv0) + xn’
Vai " Va4 1937 T2 8 avy 1V14 24
n n
where 01 - 0'(v(x1,tn)). *1 - V'(v(x‘.,tn)). wWith
n n
° 1 v h
n n 11 n _ 11
(3.34) Al - P K v ek Hy ( n ) .
1 24 21
(3.33) reads
2 x
) '-;-— NI LR
ntl o0 non Lk o024 -on n
(3.35) vi v1 + I:A‘.Av1 + 2 (Ai) A'A v1 + klli

k
n
XA(b * ‘*:"u”

As before, we diagonalize Al by setting

1
n 1 1 v/ 0'1' 0
(3.36) - .
’
o) N
so that A} = l:J:(l:)-‘. We substitute
(3.37) ": - :'l‘u'i'

thus obtaining (after extending all grid functions to real functions:
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 foniund

Minea 4

n n
ug (x)+u,(x)

k
3.38) ™0 = @ Y+ (- L e(})e == o(b ¢ (Pl o]
n n 1 .n(x)

2
n
+ kH (x) + O(k)
whare L 1 (L2(m)? o 22(m)? 1s defined as
kz 2,4+ -
(3.39) LU(x) = Ulx) + k3" (x)80(x) + 3~ (I"(x))*8 & u(x) .
Equation (3.38) can be rewritten as
n=~1
n 1 1 \
U= § o L e M= Yo )e—— :
=0 1 n-2 w1 L} 1 ’l(x) E |
n »n p 1
X ) + o) T
m 1 2 0 i
. (b * (¥ (x))('——z——'—)) + (Ln_1 ese L,)U ;
+ Kk —Zo (B (Lo oee Dpyy) i
Partial summation yields
n=-1
(3.41) -Zlo (B g oo DT =L)p = (T =L _ L . cceLyp _,
n-2
- -Zo Loy oo Dpgg(T = Ly eoe Todp = )
The “"local” amplification matrix of L, is given by
K n 2 kz
(3.42) Z(x,w) = I + 13 (x) Y sin w + (J (x)) ) (cos w=1)
h
where @ has the same meaning as before. If ﬁ-/ Qn(x) €M<t for x€R, then

Iz(x,w)l €1 for x,0 € R. It follows from the theorem on page 121 in [19] that

-{7=




(3.43) "'n'nz(”ﬂ_z(.’ €1+ Ck
where C > 0 can be chosen independently of n,k for tn € [0,T). The rest of the proof
proceeds in the same manner as for lesma 3.1.

Using Keller's [11] nonlinear stability-conaistency principle, we obtain the following
convergence result:
Theorem 3.1,

Let b,4,¢ be sufficiently smooth, b,b' € L'(2'), ¢ > 0. Also assume that the

data f,uy,u, are smooth. (As a consequence, {3.2), (3.3) has a smooth solution v,w).

Choose the scheme (3.6), (3.10) such that 0 < ¢ <-:- max /A (v(x, )] < 1 holds and
xen, tefo, 1l

such that (3.9), (3.11) are satisfied. Then there is a unigue solution

SN L JUP= L & B :.: of (3.6), (3.10), which fulfills the convergence
estimate
(3.44) v - wix,,t ), 1+ "o} - wix ¢ )) ph?

1 e 12 15".: <
where D can be chosen independent of h, tn < T

By applying the same analysis to the "differenced” equations, convergence estimates in
higher Sobolev norms can be obtained.

It is clear that the numerical performance of the method very much depends on how
“well® the second order accurate integration rule (3.8) integrates b and b' and on how
large derivatives of v and w get., Particulsr care must be taken for a class of

practically important kernels with the following behavior

(3.45) b4 (q)) -ET."’/‘, iem, 0<ecc€1, A>0.
€

The trapezoidal rule approximation

t

kA 1 -t/¢
(3.46) £ Ib*(a)ldo = = (5 + T ot %)

18-
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b

in unstable unless -:- < const. and the explicit scheme (3.6), (3.10) also requires this

serious restriction.

In the next chapter, we shall deal with the special case where the kernel is a sum of
exponentials. We show in this case how stiffness problems can be avoided. Also, we
compute the convolutions recursively, which is less time consuming than using forwmula

(3.8).

L Ar————— i

afaew
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4. GLO ANALYS

We assume that the kernel is of the form (1.4) and set

t -lt(t-t)
(4.1) veu,ve w0z, - K" ! e O(ux(x,'r))xd?
Then (1.1) is equivalent to the system
e T Y
)
(4.2) w = ¢v) - z, + fix,t)
t x 1 [ ]
Zge = KWV, - A2y

and the initial conditions wu(x,0) = ug(x), u,(x,0) = u,(x) become
(4.3) v(x,0) = \Ia(!), w(x,0) = n‘(x), :l(x,ﬂ) =0

Following the recipe (3.5), we obtain the following Lax-Wendroff discretization for (4.2)

2 M
ml _on n_k_ o t=.on n n
(4.4) v A AR Sl O WL 12‘ xy, + af))
'nﬂ - 'n . k““'n) - ‘f n . fn)
1 1 1 o TR
t=1
2 M M
X .* l..n n -n, n n n
t G v v D) 1 K a0vy) + ) Ay, + £
=1 =1
n+1 n n n
T 50 + k[llbﬂvt) - Xlzul +
+ K (k8% (2 (vP + v® 1AW - A (k. amv™) - Azt )
2 % 2 Vit Vi 1 Ay Rl A uy

for 1 €% n >0, subject to the initial conditions

(4.%) v: = u&(xi), wg - u1(x‘), H 0

o -
R4

Here v: denotes the approximation to vixg,t,) etc. The last equation of (4.4) is stiff
for A‘ > 1. We obtain the growth function

-t - i 2
(4.6) B (AK) =1 = Ak 4o Ak,

=20~
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v e e

which fulfills |l‘| <1 iff 0 ¢ l‘k <€ 2 holds. The scheme (4.4) will thus be unstable

unless k max l‘ ¢ 2 holds (for some rheological applications X‘ may be as large as 108
3 -
{22)1). However, this can be rapaired by making the scheme (4.4) semi-implicit, e.g. by
2 X2 |2 m

replacing the term E Xzsn by 2 MBSyt

2 AeBey In that case we get

1 - l'k
(4.7) o, (A k) & e

L I 1 2
1 2 (l"k)

and lw <1 1f 0<A!k<-1+/§ or Ak > 2. Moreover, e have 0 < w, < 1 for

)

0« Xlk <1 or \‘k > 2. The growth function of the fully implicit scheme is negative

(but less than one in modulus) for Ak > 1 + /S. Since this produces oscillations in the
numerical solution, the semi-implicit scheme is to be preferred.

The convergence of the scheme (4.4) is analyzed in the same fashion as in section 3,
the nontrivial step again being the stability proof. In the present situation, stability
must be shown globally in time, and not only on finite time intervals. We assume th:
situation given in section 2, i.e. ¢ = ¥, solutions are spatially 2w-periocdic {(of course
the mesh size is chosen as an integral divisor of the period, and "“0'“1 are small.
Rather than studying the stability of (4.4), we investigate the Lax-Wendroff discretization
of the symmetric hyperbolic form (2.2). Although the two schemes are not equivalent, they

only differ by higher order terms negligible for the stability analysis. Equation (2.2)

leads to the following scheme:




2
n nL,n _k n .+ .1 n_ 1 n - n
v = vg ¢ kBLvaw + o= [BIv ) {8T(B(3 v ¢ v _I8V)

M
a( L & top + wD + 2D} + B vIBV]) (D]
m=1

€
]

M
n T n n n
i v, + k[B(vl)Av1 - -E‘ Klay, * w,) o+ fll

2
k R+ o1l n_1.n - n veo? n,.n
(an + 3 [BYDAT(B(5 v + 5 V] I8TW]) + B (v])BIV) A et

n
i

"
n n n,,.n n
- .21 x-{-x.(g-i +w) e ‘(VL)A'L} + feil

M
1 n n n n n n
9py = Gy * k[Agtgpy 4w+ _z' Kyl +vp) = ]

2 M

k 2, n n n.,.n n n n,.,..n n

+ 3 [Mgtgg, + v - A BvDiavi + 2‘ K (=A (gl + w)) + Blviavi) - £ ]
We first deal with the stability of the trivial solution v = w = 9, = 0. The

linearization of the right hand side at this solution has the form
.14k +xz.A+"—2-(A+:.A'+x.x.A+:.LA+L2)
L=1 0 18+ (Lar, o™y 1% 0

where Ly,Ly are the constant coefficient matrices

8(0) 0
8(0) 0

.
.




We expand v,v,ql in FPourier series:

{s/h]
v: = 2 v:(x)."xh
x=-(3] ;

Then, for the Kth Fourier component, the operator A becomes i -'-!'9;(‘-@—)- and A+A_

becomes 2 M—g-)—:-l . We thus have to investigate the spectrum of the matrix
h

2
LK) = I+ kL + ky sin(Kh)L, + 1‘3 (cos(Kh) - 1)
h

h
2 2
2k )3
'L1 + 7h sin(Kh) (L0L1 + L1L°) + 2 Lo
Por the following, we assume
(4.8) il:' 8(0) = const., < 1 .

If K#0 {is fixed, then L(K) = I + k(Ly + KL,) + O(k?). Since the eigenvalues of

Lo + lc:.1 have negative real parts (.f. section 2), the eigenvalues of L(K) are inside
the unit circle. Por K = 0, L(K). has a double eigenvalue one, the remaining eigenvalues
are inside the unit circle. The eigenvalue one may be transformed away in a fashion
analogous to section 2 and need not concern us further.

We have to investigate the behaviour of L(K) as X + @, 1In this case, at least one

of the terms sin(kh), cos(Kh) - 1 is large compared to h. The eigenvalues of L(K)

| are in first order given by those of j

k

I#h

kz 2 ;
i lin(l(h)L1 + = (cos{(Kh) - 1)L . :
h2 1

This operator has an M~fold eigenvalue ! and the simple eigenvalues

- -

2
12 Li- B(0)sin(kh) + 53 82(0)(col(xh) = 1), If (4.8) holds, these two eigenvalues lie on
h
an ellipse inside the unit circle. A simple perturbation analysis shows that the M-fold
eigenvalue one is perturbed into M distinct eigenvalues inside the unit circle, and their

distance from the unit circle is of order k. As in section 2, there is a matrix

“23=
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T(K) such that T N(K)L(K)T(K) is dissipative; T(K),T"'(K) are bounded independently

of K, and for K large T(K) has the form (2.5). Thus the trivial solution is stable.
As in section 2, we must show stability for the variable coefficient problem when v

is in a neighborhood of 0. There, we made use of the fact that the principal part of the

differential operator was skew-adjoint. In the discrete case, we have to investigate the

operator
(v,) =T+ ke ( )A*ﬁb( v +3 8"
Livy) =1 119 2 LRl vt Vi
0 B(v) 0...0
B(v) 0 0...0
where L‘(v) - 0 0 .
0 0

All other contributions to the linearization are of order k. Let us put A = L1(v1)§’.

Then the adjoint of A is aA®* = -A-L‘(vl) and it is immediately verified that

2
L1(v*) =1+ % (A ~ A*) - %— (AR* + A*A) + O(kivl) .

A simple calculation yields

2

2
1+ -0 - X oae s amnz? v ai? - 300 s anzi? s o5P

If % is chogen sufficiently small (but still of order 1), then an argument similar to
section 2 guarantees the stability of the variable coefficient problem. We thus arrive at
the following result.

Theorem 4.1.

Assume that the assumption of sectior 2 holds and that % is chosen small enough.

Then the convergence estimate (3.44) holds uniformly in time.

=24~
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S. NUMERICAL EXPERIMENTS

For all computations we used a kernel b of the form (1.4) and we employed the scheme
given by (4.4) and (4.5) with the semi-implicit modification. The spatial mesh size was
prescribed and the temporal mesh size was determined at each step such that the stability

h
calculations were performed at the VAX of the Mathematics Research Center, University of

conditions were satisfied. 1In particular, we chose k max v 0'(v:) < 0.8. The
i

wiscongin-Madison in double precision arithmetic.

To solve the initial value problem numerically, we introduced artificial (far out)
boundaries at x = X, and the boundary conditions v(iX,t) = w(1X,t) = 0 (since the
initial data vanish at i), This introduces an additional error of order

o max |v(zX,t)| + max |w(tX,t)|). In all the computations reported below, this
tefo,T) telo,T)
quantity can safely be neglected. We performed a convergence test for the problem (3.2),

(3.3) with ¢(v) = $(v) = v + 1 va,b(d) - 0.40-0, where v(x,0), w(x,0), f(x,t) were

3 xz
2, 2 ¢
chosen such that the problem has the exact solution vix,t) = (1 - x")e ’
2
——-; +
wix,t) = -xe + Table 1 shows the errors o, e, {in the discrete Lz-norn) of v

and w, resp. and the corresponding convergence rate given by ftn :%ﬁ%%y)/ln 2 at two

different t-values and for the maximal errors for t € (0,1]. Obviously, the scheme is
second order accurate for this smooth solution.

z-errorl of v and w decay as t increases. The reason

Table 2 shows that the L
for this is the dissipative effect of the Volterra term.

The following calculations were done using

(5.1) o(v) = ¥(v) = 2v + 5v2 + 25v°
(5.2) b(a) = 0.4e"% + 0.2¢72°
and the initial data
2
(5.3) () v (x,0) = evy(x) = (1 - 3x - x* + x)e™* /2
2/2

() w (x,0) = ewo(x) = (1 - x*)a ™

-d5-
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with 0 € € € 1. The force f(x,t) was set equal to zero. ¢' is strictly positive for
all v € R. Pigures ! and 2 show voix), wo(x) resp., and the next plots show t-sections
of v and w, i.e, they show v and w as functions of x for fixed t-values. Por

€ = 1 ("large" initial data) the dissipative influence of the Volterra term is not strong
enough to avoid singularities. FPigures 3-5 and 6-8 show the evolution of v and w
resp. A shock-type singularity appears at t = 0.057, x ~ 0.4. Then a second

(t = 0,073, x ~ -1.6) and a third (t = 0.12, x =~ 2) sghock develops.

At this point we want to remind the reader that the existence of shocks for equation
{(1.1) has not been proved yet, actually there is no theory of weak solutions at all.
However, it has been shown that smooth solutions may cease to exist after a finite time
(8], because v, and w, tend to infinity.

Table 3 shows the maximal values of the difference quotients Avn, " for

i

tn 1 and i € 0 (corresponding to the singularity at x ~ -1,7). Halving the mesh

size approximately doubles these values, which means that the differences

v“_1 VL Y, within the shock are practically independent of the mesh size.

-'n
1

Since the Lax-Wendroff method is an artificial viscosity method, we cannot expect
completely sharp shocks. A shock layer of thickness O(h) develops around the shock ([19],
section 12.14). This is illustrated by Figuras 10-14, which show the left shock in Pig. 9
for various mesh sizes. We have ¢ = % and t = 0.631. The width of the shock layer is
(constantly) about 3h (grid points are marked).

The "overshoot™ (see also Pigures 3-8) is typical for Lax-Wendroff method ({19},
section 12.14) and is due to artificial dispersion. The high wavenumber components of the
solution have a smaller wave speed and thus lag behind the shock front. The width of the
“overshoot layer” decreases with h. Outside the shock-layer and overshoot region the
solutions coincide up to the plot accuracy for h = 0.01, h = 0.02, h = 0,04.

Our convergence discussion in the previous section does of course not apply to

solutions with singularities, but it is clear that, i{f the Lax-Wendroff method converges

boundedly almost everywhere, then it converges to a weak solution [19].

PSS D




Therefore the presented numerical evidence indicates that weak solutions u of (1.1),
such that LY and u, have shocks, exist.

For decreasing € the relative effect of dissipation becowes stronger. For €= -;3-
the breakdown of smooth solutions occurs at t ~ 2.7, while the second derivatives of the
golution of the corresponding quasilinear wave equation
(5.4) U = O(ux)'

(with the same initial data) blow up already at t = 2.1.
1
40°
for t € {0,20], the dissipative mechanism of the Volterra term seems to produce globally

Pigures 16-21 show the evolution of v and w for € =-—, W¥No singularities occur

smooth solutions here. 1In the Pigures 15-21, L2N denotes the t2-norm of v,wv at the
given time t. The decay of the L?-norms with increasing t is shown in Table 4. 1t is
clear from PFigures 15-21 that the L.-nom algo tend to zero as t + =,

Figures 21-26 show the corresponding plot for the wave equation (5.4) (without the
integral term). The first derivatives of v and w blowup at t » 4.7, and the energy

given by (1.3) of course remains constant for ¢t > 0 (apart from artificial viscosity

effects which show up in the fourth digit of the L2-norm).

o




(1}

(2}

(3]

4]

(s}

(6)

7}

(8]

9]

{10}

1)

{12}

(13]

REFERENCES

Re B. Bird, Kinetic th y and titutive equations for polyweric liquids, J.

Rheology 26 (1982), 277-299.

R. B. Bird, O. Hassager, R. C. Armstrong and C. P. Curtiss, Dynamics of Polymeric
Liquids (2 vol.), J. Wiley, New York, 1977.

Ce M. Dafermos and J. A. Nohel, Energy methods for nonlinear hyperbolic Volterra
integrodifferential equations, Comm. P.D.E. 4(1979), 219-278.

C. M. Dafermos and J. A. Nohel, A nonlinear hyperbolic Volterra equation in
viscoelasticity, Amer. J. Math., in press.

He Priedel and 8. Osher, Nonlinear instability and loss of accuracy for finite
difference approximations near shocks and rarefaction waves,

A. E. Green and R. 8. Rivlin, Nonlinear materials with memory, Arch. Rat. Mech. Anal.
1 (1957), t=21.

A. Harten, J. M. Hyman and R. D. Lax, On finite difference approximations and entropy
conditions for shocks, Comm. Pure Appl. Math. 29 (1976), 297-322.

H. Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic
equations, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy 1981.

T. Kato, Linear evolution equations of "hyperbolic"™ type I1I, J. Math. Soc. Japan 25
(1973), 648-666.

T. Kato, Quasi~linear equations of evolution with application to partial differential
equations, in: W. N. Bveritt (ed.), Spectral Theory of Differential Equations,
Springer Lecture Notes in Math. 448‘(2975), 25=70.

H. B. Keller, Approximation methods for nonlinear problems with application to two~-
point boundary value problems, Math. Comp. 29 (1975), 464-474.

He O. Kreiss, Shock calculations and the numerical solution of singular perturbation
problems, in: R. E. Meyer (ed.), Transonic, Shock and Multi-dimensional Flows,
Academic Press 1981,

Je Ae Nohel, A nonlinear conservation law with memory, MRC TSR #2251, Univ. of

Wisconsin, Madison, 1981,

-28=




o

4

[14) W. Noll, A mathematical theory of the mechanical behavior of continuous media, Arch.
Rat. Mech. Anal., 2 (1958), 197-226.

{15) J. G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc.
London A200 (1950), 523-541.

{16]) C. J. S. Petrie, Elongational Flows, Pitman Research Notes in Mathematics 29, London-
San Francisco-Melbourne 1978.

(17] M. Renardy, Singularly perturbed hyperbolic evolution problems with infinite delay
and an application to polymer rheology, to appear in SIAM J. Math. Anal.

[18] M. Renardy, Some remarks on the propagation and non-propagation of discontinuities in
linearly viscoelastic liquids, Rheol. Acta, 21 (1982), 251-254.

[19) R. D. Richtmyer and U. W. Morton, Difference methods for initial value problems, J.
Wiley, New York 1967.

[20] W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon 1978.

[21] J. T. Schwartg, Nonlinear Functional Analysis, Gordon and Breach, New York 1969,

[22] M. Slemrod, Instability of steady shearing flows in a nonlinear viscoelastic fluid,
‘Arch. Rat. Mech. Anal. 68 (1978), 211-225.

{23) H. M. Laun, Description of the nonlinear shear behaviour of a low density
polyethylene melt by means of an experimentally determined strain dependent memory
function, Rheol. Acta 17 (1978), pp. 1-15.

PM/MR/ed

-29-




ov(h)
A h= 0.1 4.7439746 x 1073
t * 0.49 h = 0,05 1.2233024 x 1073

h = 0.025  3.091415 x 10~%

h = 0.1 6.1822914 x 103
t » 0.96 h = 0.05 1.5563728 x 10”3

h = 0,025  3.883662 x 104

h=0.1 6.198451 x 1073

max h = 0.05 1.5611899 x 103
tefo,1)
h = 0.025  3.906411 x 10~4

Rate

¢, (h)

2.5703589 x 10”3
5.916561 x 10~4

1.432932 x 1074

2.2217676 x 1073
5.859864 x 1079

1.553665 x 10”4

3.3348472 x 1073
7.615021 x 104

1.809902 x 10~¢

Table 1. Errors and Convergence Rates

.

% -30-

Rate

1.92

1.92




t o (h = 0.1) e, (h = 0.2)

1. 6.0477392 x 1073 2.6280316 x 1073
3. 3.3230997 x 1073 2.6443695 x 1073
5. 2.1187529 x 1073 1.9864532 x 1073
7. 1.4750333 x 1073 1.4025019 x 1073
9, 1.0429657 x 1073 9.730021 x 1074
1. 6.102893 x 1074 5.120333 x 1074
13. 2.335227 x 1074 1.883220 x 1074
15, 2.232786 x 10~¢ 1.348227 x 1074

Table 2. Decay of Errors

bv o
h=0. 8.748 5$3.19 )
h = 0.05 17.90 113.8
h = 0.025 4.4 223.6

Table 3. HNumerically obtained values for v ,v, at t ~ 1, x » -1.7

t L2N : V L2N : W

0. 5.3925 x 1072 2.80243 x 1072
5. 1.20131 x 1072 1.60351 x 1072
10. 3.7581 x 107 4.81279 x 1073
1s. 1.5276 x 1073 1.8037 x 10”3

Table 4. Decay of L2-norms due to dissipation
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